
ParaNut - An Open, Scalable, and Highly Parallel
Processor Architecture for FPGA-based Systems

Gundolf Kiefer∗, Michael Seider†, and Michael Schaeferling∗

∗University of Applied Sciences Augsburg †Mixed Mode GmbH
Dept. of Computer Science Lochhamer Schlag 17

An der Hochschule 1 82166 Graefelfing, Germany
86161 Augsburg, Germany Email: michael.seider@mixed-mode.de

Email: {gundolf.kiefer, michael.schaeferling }@hs-augsburg.de

Abstract—The paper presents the ParaNut architecture, a
new open and highly scalable processor architecture for FPGA-
based systems. The ParaNut architecture follows a new concept
of parallel processing units with customizable capabilities which
allows a seamless transition between SIMD vectorization (data-
level parallelism) and simultaneous multi-threading (thread-level
parallelism). A preliminary implementation of a ParaNut on a
Virtex-5 FPGA achieves 6.13 CoreMarks/MHz using 8 cores,
which is approximately 5 times faster than OpenRISC 1200 (1.28
CoreMarks/MHz).

Keywords: Computer Architecture, RISC, Customizable Pro-
cessor, Soft-Core, FPGA

I. INTRODUCTION

The capacity and efficiency of available field-
programmable gate arrays (FPGAs) is growing continuously.
Today, even low- or mid-range devices allow the
implementation of complete Systems-on-a-Chip (SoC)
or even Networks-on-a-Chip (NoC) on a single FPGA device.
Traditionally, the strengths of FPGAs in embedded systems
lie in the implementation of specialized hardware. However,
complex SoCs virtually always require one or several CPUs
to implement the software part of the system.

A growingly important application field for high-
performance FPGAs is real-time image processing, for exam-
ple, in Computer Vision applications [1]. Typical Computer
Vision applications can be split into processing stages, clas-
sified into 4 classes, namely a) pixel-based and b) window-
based filters as well as c) semi-global and d) global op-
erations [2], [3]. Local and window-based filters are rather
simple operations performed on each image pixel and as
such are well-suited for SIMD (single instruction, multiple
data) vectorization or specialized hardware. Semi-global and
global operations are more complex and typically well-suited
for parallelization on multiple CPU cores, which may be
highly customized and application-tailored processors as in the
case of the SURF (”Speeded-Up Robust Features”) descriptor
calculation presented in [2].

Also, for low-cost and low-performance products, a single
FPGA with a (small) soft-core processor has some clear
advantages over standard microcontrollers accompanied by an
FPGA or CPLD for custom logic. The board design is simpler

and more immune against chip discontinuations. If the system
integrator owns the HDL code of the soft-core processor, he
can eventually port the processor to a new FPGA type, and he
does not need to change anything in the complex software.

Looking at the available soft-core processors for FPGAs
today, it can be observed that they are either device-specific
(e. g. Xilinx MicroBlaze, Altera Nios), not multi-core capable
(e. g. OpenRISC 1000, LEON3 only up to 4 cores [4]), or too
complex for small, area-limited systems (e. g. OpenSPARC).
To address a large field of applications, a processor architecture
should support a speed-area trade-off in a wide range. On
the one hand, an area-optimized, pipeline-less single-core
implementation should be possible for low-cost applications.
On the other hand, for high-performance applications, a highly
parallel many-core variant (8 cores or more) is desired that pro-
vides a shared memory model without noticeable performance
degradation due to bus contention.

This paper presents the ParaNut architecture, a new open
and highly scalable CPU architecture for FPGA-based systems.
Special focus is put on parallelism at thread and data level in
order to allow both small and power-efficient systems based
on one architecture. The ParaNut architecture introduces a
new concept of parallel processing units with customizable
capabilities which allows a seamless transition between SIMD
vectorization (data-level parallelism) and simultaneous multi-
threading (thread-level parallelism). By sticking to an existing
instruction set architecture (OpenRISC), a GCC-based tool
chain for software development is already available today.

Section II gives an overview on presently available soft-
core processors for FPGAs as well as computing platforms for
embedded systems in general. Section III introduces the basic
concepts and design decisions of the ParaNut architecture.
The new programming concept that incorporates SIMD and
multi-thread programming is sketched in Section IV. Section
V describes the implementation status of the project, and is
followed by experimental results in Section VI. Section VII
concludes the paper.

II. RELATED WORK

There are several approaches on how to integrate CPUs
into FPGA-based platforms, namely by means of hard-core or

embedded world Conference 2015
www.embedded-world.eu



soft-core processors. Recent high-grade FPGAs include one
or more dedicated hard-wired (hard-core) CPU cores, as for
example Xilinx equips their Zynq-FPGAs with a dual-core
ARM CPU. Although this concept offers a convenient platform
for general applications, these FPGA devices are rather cost-
intensive and the involved CPU architectures are largely fixed,
which makes it hard to adapt them towards application-specific
needs. A present trend in the area of Embedded System is
to put a large number of CPU cores on a single chip to
provide computational power. The Epiphany accelerator chip is
a commercially available many-core solution, contains 16 or 64
CPU cores and can be coupled with an FPGA [5]. Although the
development tools and libraries are open, the hardware itself
is not, which prevents the system designer from customizing
the CPU architecture to fit the application.

Soft-core processors can easily be adapted and optimized
for a particular application. The idea to use an architecture
description language (ADL) to define application-specific pro-
cessors already evolved several years ago [6]. An ADL allows
to synthesize the hardware together with compilers and other
development tools automatically [7]. Projects following this
approach are MIMOLA (University Dortmund), LISA (RWTH
Aachen) and the commercial Xtensa project. Besides these
projects, there is a number of research projects dealing with
configurable multi-core and parallel architectures in general.
Some of them are CHIMERA [8], PipeRench [9], MORA [10]
and LegUp [11].

For productive use, quite a number of soft-core processors
targeting FPGAs are available today. Typically, they can be
configured to a certain extent, depending on the specific
implementation which allows to customize their capabilities, in
order to better fit the actual applications demands. Commercial
solutions for soft-cores are, for example, the MicroBlaze (Xil-
inx) or Nios II (Altera) processors. Both of them are closed-
source and only are applicable on the vendors FPGAs. Open-
source projects allow to shape the architecture towards the
specific application even more due to the available source code
at register-transfer level (RTL) and are less restricted towards
specific FPGA vendors. Examples for open-source processors
are LEON 2/3/4 (Gaisler Aeroflex), OpenSPARC (Sun) or
OpenRISC. Most of the mentioned soft-core processors share
one or several of the following drawbacks or limitations: They
are either (a) not to be used freely (bound to license fees), (b)
platform-specific, (c) not multi-core-capable or (d) have a high
logic resource usage even in their smallest configuration.

III. THE BASIC ARCHITECTURE

A. Design Considerations

Numerous techniques for exploiting parallelism in general-
purpose processors are known today. They can be grouped
into three categories, namely data-level parallelism (DLP),
instruction-level parallelism (ILP), and thread-level paral-
lelism (TLP) [12].

The DLP category includes SIMD (single instruction, mul-
tiple data) extensions, such as Intel’s SSE or the ARM SIMD
media extensions. From a hardware perspective, SIMD is very
attractive since it can considerably reduce the load on the
memory bus (i. e. the number of instruction fetches per data

items processed). Unfortunately, the SIMD extensions of popu-
lar embedded or workstation processors share some properties
that make it difficult to develop optimizing compilers utilizing
such units automatically [12]. Hence, in practice, these SIMD
extensions are utilized manually, either by using assembly
programming or by using special libraries. Both ways are time
consuming and lead to unportable code. Better support for
high-level language programming is desirable from a software
developer’s perspective.

The ILP category includes all the techniques that improve
the throughput of a single general-purpose instruction stream,
such as (deep) pipelining, out-of-order execution, or VLIW
(very long instruction word) architectures. ILP techniques gen-
erally come at the cost of high area usage and power consump-
tion. They require additional hardware structures to resolve
pipeline conflicts and to perform the instruction scheduling.
On the other hand, machine instructions which depend on each
other cannot be parallelized in many cases. Hence, the costs in
terms of chip area and power consumption are typically much
higher than the achievable benefit in terms of speedup. For this
reason, the ParaNut design uses ILP very conservatively and
focuses on DLP and TLP instead.

Finally, the TLP category comprises multi-core architec-
tures as well as all techniques for simultaneous multi-threading
on a single core. From a hardware perspective, TLP requires
a careful design of the memory/cache subsystem and bus
interfaces. Besides this, a variable number of cores is a
comfortable way to offer scalability (i.e. a performance-area
trade-off) to the system integrator. From a software perspective,
TLP requires the development of multi-threaded code, which
is well understood today and supported by various software
libraries and compiler extensions such as OpenMP.

To summarize, the design of the ParaNut architecture was
guided by the following considerations:

• ILP techniques are used only very conservatively. The
core architecture is optimized for area, not for speed.

• Good support for TLP and DLP should be provided
to allow highly performant systems when needed.

• A programming model should be provided, that allows
SIMD to be used easily using a high-level language
and without the need for special libraries.

B. Instruction Set Architecture

The ParaNut instruction set architecture is compatible with
the OpenRISC 1000 specification. The OpenRISC 1000 archi-
tecture is a 32-bit load and store RISC architecture designed
with the purpose to support a spectrum of chip and system
implementations [13]. Scalability is achieved by defining a
minimalistic basic instruction set (ORBIS32) together with
optional extensions including a floating-point unit (FPU) or
a memory management unit (MMU). Furthermore, the basic
architecture offers configuration options such as different reg-
ister file sizes or optional arithmetic instructions.

ParaNut processors implement all mandatory instructions
according to the ORBIS32 specification. Hence, the OpenRISC
GCC tool chain and libraries (newlib) can be used with the
ParaNut without modifications. Features unique to ParaNut

embedded world Conference 2015
www.embedded-world.eu



require some additional ParaNut-specific instructions. These
will be encapsulated in a small support library, so that they
are still usable without compiler modifications.

C. Structural Organization

Figure 1 shows a block diagram of an exemplary ParaNut
instantiation with four full-featured cores (alternatives will
be discussed in Section IV). Each core contains an ALU,
a register file and some control logic which together form
the Execution Unit (ExU). The instruction port (IPort) is
responsible for fetching instructions from the memory subsys-
tem and contains a small buffer for prefetching instructions.
The data port (DPort) is responsible for performing the data
memory accesses of load and store operations. It contains a
small store buffer and implements write combining and store
forwarding mechanisms as well as mechanisms to support
atomic operations.

The Execution Unit is designed and optimized for a
best-case throughput of one instruction in two clock cycles
(CPI = 2, CPI = ”clocks per instruction”). This is slower than
modern pipeline designs targeting a best-case CPI value of
1. However, it allows to better optimize the execution unit
for area, since no pipeline registers or extra components for
the detection and resolution of pipeline conflicts are required.
Furthermore, in a multi-core system, the performance is likely
to be limited by bus and memory contention effects anyway,
so that an average CPI value of 1 can hardly be achieved in
practice. In the ParaNut design, several measures (such as the
IPort and DPort) help to maintain an average-case throughput
very close to the best-case value of CPI = 2, even for multi-
core implementations.

The design of the memory interface and cache organization
is very critical for the scalability of many-core systems. In a
ParaNut system, the Memory Unit (MemU) contains the cache,
the system bus interface, and a multitude of read and write
ports for the processor cores. Each core is connected to the
MemU by two independent read ports for instructions and
data and one write port for data. The cache memory logically
operates as a shared cache for all cores and is organized
in independent banks with switchable paths from each bank
to each read and write port. Tag data is replicated to allow
arbitrary concurrent lookups. Parallel cache data accesses by
different ports can be performed concurrently if their addresses
a) map to different banks or b) map to the same memory word
in the same bank. Furthermore, by using dual-ported Block-
RAM cells, each bank can be equipped with two ports, so
that up to two conflicting accesses (i. e. same bank, different
addresses) are possible in parallel. Hence, even for many
cores, the likelihood of contention can be arbitrarily reduced
by increasing the number of banks, which is configurable at
synthesis time.

The cache can be configured to be 1/2/4-way set associative
with configurable replacement strategies (e.g. pseudo-random
or least-recently used). The Memory Unit implements mecha-
nisms for uncached memory accesses (e.g. for I/O ports) and
support for atomic operations. All transactions to and from the
system bus are handled by a bus interface unit, which presently
supports the Wishbone bus standard, but can easily be replaced
to support other busses such as AXI.

Fig. 1. Block diagram of a ParaNut with 4 (full-featured) cores

D. Software Development

For the processor system described so far, a cycle-accurate
behavioral model has been written using SystemC. In the
design phase, it has been used for performance analysis to
support the design decisions described above. It serves both as
a reference for the synthesizable VHDL implementation and
as an instruction-level simulator.

For software development, the GCC tool chain from the
OpenRISC project can be used. An operating environment
based on the ”newlib” C library allows to compile and run
software both in the simulator and on real hardware (see
Section VI).

IV. SIMD USING STANDARD INSTRUCTIONS

The SIMD extensions of popular embedded or workstation
processors share some properties that make it difficult to de-
velop optimizing compilers utilizing such units automatically
[12]. These are, on the one hand, serious restrictions, such
as fixed vector widths, a lack of conditional execution of
individual vector elements and only limited memory address-
ing modes. On the other hand, common SIMD units contain
very specialized instructions with complex semantics (e.g.
”add with saturation”). They are very useful for performance-
critical code sections commonly found in signal or image
processing applications, for example. However, they can hardly
be generated automatically by a compiler and are thus rarely
seen in auto-vectorized code.

The ParaNut introduces a new concept for SIMD vector-
ization with a special focus on good compiler support for
easy software development. While not fully implemented yet,
this section describes the main ideas of this concept, which
uses a multi-threading-like programming model for SIMD
vectorization. It allows, on the one hand, to utilize SIMD
vectorization using standard machine instructions, which, on
the other hand, can easily be ported to other processors without
SIMD extensions.

A. Linking Cores

Let us assume a normal 4-core processor as shown in
Figure 1 with one modification: The control units of all but
the first core are switched off, and instead, the control signals

embedded world Conference 2015
www.embedded-world.eu



Fig. 2. ParaNut operating in Linked Mode

of the first core are also used by all other cores (see Figure 2).
What would happen, if a multi-core processor is modified like
this? From a hardware perspective, all instruction- and control-
related components of the linked cores become superfluous.
The remaining hardware strongly resembles a single-core CPU
with an SIMD unit. There is just one instance of instruction
fetch and decoding logic, but 4 parallel ALUs, register files
and data ports, each of which can be seen as a vertical slice of
a 128 (= 4 * 32) bit wide SIMD unit. The omitted hardware
components save a considerable amount of logic area and -
not less importantly - do not emit any memory accesses for
instruction fetches. This strongly reduces the load on the cache
subsystem and avoids system bus contention.

On the other hand, from a software perspective, the struc-
ture still resembles a multi-core architecture. To be precise, it
still behaves exactly like a normal multi-core system, as long
as no conditional branch instructions and jumps with variable
target addresses occur in the instruction stream (jump and
call instructions with fixed target addresses are still allowed).
Hence, as long as these instructions do not occur, multiple par-
allel threads are actually executed by simple SIMD hardware.
Or, from another point of view, SIMD vectorization can be
programmed in the same way as multi-threaded code using
the standard instruction set and the programmer’s favorite
language. There is no need for special instructions.

For example, the C code fragment

int n, a[4], b[4], w[4], wsum[4];
...
for (n = 0; n < 4; n++)

wsum = a[n] * w[n] + b[n] * (100 - w[n]);
...

can be transformed as follows:

int n, a[4], b[4], w[4], wsum[4];
...
n = pn_begin_linked (4);

// turns on linked mode, returns core id (0..3)
wsum = a[n] * w[n] + b[n] * (100 - w[n]);
pn_end_linked ();

// switches back to single-thread mode
...

Initially, the processor runs in a single-thread mode with
the primary core executing code and the linked cores being
inactive. The macro pn begin linked() activates the linked
cores with the effect that the subsequent code is syn-
chronously executed 4 times in parallel. Conversely, the macro
pn end linked() marks the end of the parallel section and
causes the linked cores to be deactivated again.

Similarly to the two linked-mode macros, two macros
pn begin threaded(int nThreads) and pn end threaded() can
be defined which open and close a parallel section for con-
ventional multi-threaded code. For (multi-core) processors that
do not support the linked mode, the linked-mode macros can
be mapped to their threaded-mode variants, and the code still
executes correctly in multiple parallel threads. Hence, source
code containing sections for the ParaNut’s linked mode still
remain fully portable.

As mentioned above, certain restrictions apply to code
inside a linked-mode section. They are related to conditional
branches and variable jump targets and will be discussed now.
In C, the critical operations that require conditional branches
are ”if” statements, ”case” statements and all loop statements.
These constructs are not completely forbidden, but require
special care. ”if-else” statements can often be transformed
such that both bodies are executed, and the final results are
copied to the result variable(s) by conditional-move machine
instructions. For example, a code fragment like

if (n < 0) {
s = a - b;

}
else {
s = a + b;

}

is not allowed in a parallel section, but the following code is:
s0 = a - b;
s1 = a + b;
pn_cmov (s, n < 0, s0, s1);
// equivalent to "s = n < 0 ? s0 : s1;"

Loops are allowed with the premise that the repeat con-
dition evaluates equally for all parallel threads. For example,
the following for-loop is possible in linked mode since the
loop condition only contains a variable which always has an
identical value in all threads:

int a[1000], b[1000], s[1000];
int n, id;
...
// Sequential version...
for (n = 0; n < 1000; n += 1)
s[n] = a[n] + b[n];

...
// Parallel version...
id = pn_begin_linked (4);
for (n = 0; n < 1000; n += 4)
// Note: n is always identical in all threads
s[n + id] = a[n + id] + b[n + id];

pn_end_linked ();

B. Modes and Capabilities

A ParaNut core can operate in one of 4 different modes,
which are sketched in Figure 3. In mode 0, the core is
inactive (i. e. presently not needed). In mode 1, the core
operates in linked mode as explained above. A core running
in mode 2 can execute a thread autonomously. It supports all
standard instructions, but no interrupts, exceptions or system
instructions. Finally, a processor in mode 3 represents a full-
featured CPU. Often, only one core needs to support mode
3 allowing to save a considerable amount of complexity for
the other cores while still maintaining all options for efficient
thread-level parallelism.

embedded world Conference 2015
www.embedded-world.eu



Fig. 3. Modes of a ParaNut core

Fig. 4. Example of a ParaNut instantiation with cores of different capabilities

The available modes can be selected at synthesis time.
The system designer decides about the number of cores and
their capability levels, where a capability level of n means
that the core can assume modes lower than or equal to n
at runtime. Figure 4 shows a ParaNut instance with one
capability-3, one capability-2 and two capability-1 cores. At
runtime, this processor can arbitrarily be configured to execute,
for example, two threads in parallel or one thread with 4-way
SIMD-vectorized code (see Figure 5).

V. IMPLEMENTATION STATUS

In order to evaluate the ParaNut on FPGA hardware, a
VHDL model has been implemented. Although having only
been synthesized for a Xilinx FPGA in this paper, the model
is designed to be platform independent by using inference for
design primitives and therefore should be synthesizable for
other FPGA devices as well. The overall VHDL implemen-
tation is still unoptimized in several places, leaving potential
for improving clock frequency and resource usage in a future
version. Also provided are features such as instruction or
memory traces for simulation. Currently, only cores with the
highest capability of 3 are supported, leaving potential for
reducing logic usage in the future.

The VHDL model closely adheres to the architectural
features of the SystemC model on which it is based. The ExU
implements all required as well as most optional ORBIS32
instructions (except for multiply-accumulate, divide, find first
and find last operations). Atomic operations are not yet imple-
mented, but the primitives are already supported by the MemU.
Exception handling has been implemented but remains to be
verified. Integration of the ParaNut into a Wishbone based
system-on-chip is supported by a Wishbone B4 compatible bus
interface which provides burst accesses to the external memory
bus.

Configurable buffer sizes for IPorts/DPorts as well as
different implementations for bit shifting operations (serial

(a)

(b)

(c)

Fig. 5. ParaNut of Figure 4 running a) single-threaded code, b) two
independent threads, and c) 4-way vectorized SIMD code

shifter, barrel shifter) and a configurable number of multiplier
pipeline stages allow to trade speed for size and vice versa in
the core itself.

The MemU allows for fine-grained control of cache param-
eters (cache associativity, number of sets, number of banks,
replacement strategy, access arbitration). They can be chosen
to best fit the task at hand for different numbers of CPU cores.
For example, while the performance of an eight-core ParaNut
can be increased by providing a cache layout with more banks
to allow for simultaneous accesses of multiple cores, a single-
core ParaNut will not be impeded by accesses from other cores
and therefore does not suffer in (cache-)performance if only
a single bank is implemented. Note, however, that the current
VHDL implementation supports only a minimum of at least
two banks. Block-RAM with two ports is inferred for every
bank of cache memory, which allows for two read accesses or
one write access of any IPort or DPort at a time. Since each
bank RAM port needs to be routed to each IPort and DPort,
the number of ports per bank can be reduced to one in order
to save area at the expense of a slightly lower memory access
performance.

embedded world Conference 2015
www.embedded-world.eu



Fig. 6. Block diagram of the evaluation platform system-on-chip

VI. EXPERIMENTAL RESULTS

A. Setup

A series of ParaNut variants have been synthesized and
integrated into the OpenRISC Reference Platform System-
on-Chip (ORPSoCv2) which can be used to build a Wish-
bone based system-on-chip together with an OpenRISC 1200
(OR1200) core. An existing implementation for the Xilinx
ML501 board was ported to the Xilinx ML509 board (XUPV5-
LX110T) featuring a Virtex-5 LX110T FPGA. Using the same
platform, the OR1200 could then be directly compared to
the ParaNut by simply replacing the OR1200 CPU with the
ParaNut in the FPGA design. Figure 6 shows the ParaNut
and additional Wishbone-based peripheral cores that support
the evaluation by measuring time and printing output to the
UART. The OpenRISC USB-JTAG debugger was connected to
the Debug Unit, and together with the OpenRISC Debug Proxy
application they provide an interface for GDB which allowed
to transfer program data into DDR2 memory.

For evaluating performance in benchmarks the ParaNut
cores were configured to achieve high performance at a low
area consumption. The IPorts and DPorts were configured
with 4 word buffers. The ExU included a barrel shifter and
a 3-stage pipelined multiplier. A cache size of 256 KB was
chosen to allow all benchmark programs to completely reside
in the cache. This avoids slow main memory accesses and puts
more emphasis on the performance of the cache system and the
processor itself during measurements. The cache is 4-way set-
associative with a least-recently used replacement strategy. The
specific cache configuration of each ParaNut implementation
is detailed in Table I.

TABLE I. CONFIGURATION OF CACHE PARAMETERS FOR DIFFERENT
PARANUT IMPLEMENTATIONS.

Cores Banks BRAM ports Size
1 2 1 256KB
2 2 2 256KB
4 4 2 256KB
8 4 2 256KB

For the OR1200 core, the instruction and data caches were
both configured to be 32 KB in size, which was the maximum
supported setting. However, benchmark results showed no

significant decline with only 16 KB of instruction and data
cache.

B. Synthesis Results

The ParaNut variants and an OR1200 system have been
synthesized using the Xilinx ISE 14.7 software suite. Table II
shows slice usage of the ParaNut with 1 to 8 cores and other
open-source soft core processors. The column ”Cores” denotes
the number of physical (ParaNut, OR1200, LEON3) or logical
cores (OpenSPARC T1), respectively.

TABLE II. VIRTEX-5 SLICE USAGE AND MAXIMUM FREQUENCY FOR
PARANUT AND OR1200

Processor Cores LUT/FF pairs MHz

ParaNut

1 3,387 75
2 6,803 73
4 14,168 48
8 29,691 32

OR1200 1 3,286 76
LEON3 [4] 1 3,500 (LUT only) 125

OpenSPARC T1 [14], [15] 1 31,475 (LUT only) 50
4 51,558 (LUT only) 10

The ParaNut figures show, that the area increases almost
linearly with the number of cores. This is expected due to the
replication of logic for the cores (each comprising an ExU,
IPort and DPort) and the complexity of the MemU which is
growing with the addition of more banks and ports. Presently,
the maximum clock rate decreases with an increasing number
of cores. This is due to the combinational arbitration logic
inside the MemU, which is subject to ongoing optimization.
For the future, the goal is to achieve a clock rate independent
from the number of cores in the order of 70 MHz for this
technology.

The slice usage of the single-core ParaNut is in a similar
order of magnitude for the OR1200 or the LEON3 processor,
even though the ParaNut supports a complex 4-way set-
associative cache of 256 KB. On the other hand, area of a
1-thread single-core OpenSPARC T1 implementation on the
same Virtex-5 FPGA is nearly 10-fold with the 4-thread core
being the maximum to fit on the Virtex-5 device. Note, that
the entries for LUT/FF pairs for LEON3 and OpenSPARC T1
show the number of lookup tables only, and that the total slice
usage is typically higher.

C. Benchmark Results

The performance of the ParaNut has been evaluated and
compared to other soft-core processors using the Dhrystone
and CoreMark benchmarks. The benchmarks were run with
a core clock frequency of 25 MHz. All benchmark programs
were compiled with the GCC version 4.5.1-or32-1.0rc4 utiliz-
ing the ”newlib” C library. Compiler optimization level was
set to 3 (”-o3”) and compiler flags corresponding to CPU
capabilities were set according to the hardware configurarion
(”-mhard-mul -msoft-div -msoft-float”).

Tables III and IV show the results for the Dhrystone and
CoreMark benchmarks, respectively. Dhrystone is not multi-
threaded and uses integer division, so only single-core variants
without hardware divider have been considered. CoreMark was
executed in multi-threaded mode. The column ”Speedup” in
Table IV shows the speedup relative to the single-core ParaNut.

embedded world Conference 2015
www.embedded-world.eu



TABLE III. DHRYSTONE BENCHMARK RESULTS

Processor DMIPS/MHz Speedup
ParaNut 0.288 1.0
OR1200 0.345 1.2

TABLE IV. COREMARK BENCHMARK RESULTS

Processor Cores CoreMark/MHz Speedup

ParaNut

1 0.80 1.0
2 1.60 2.0
4 3.17 4.0
8 6.13 7.7

OR1200 1 1.28 1.6
LEON3 [4] 1 1.8 2.3

MicroBlaze [16] 1 1.9 2.4
Nios II [16] 1 0.93 .. 1.60 1.2 .. 2

The results are promising: Certainly, the performance of
a single-core ParaNut still lags somewhat behind that of the
other processors reported in Table IV, which are all in a mature
development state and have been optimized for many years
now. However, the ParaNut architecture has been designed
for a high level of parallelism, and these efforts appear to
be successful. Although a shared memory model and a single,
shared cache for all cores is used, even 8 cores achieve a
speedup of 7.7, and for fewer cores, the performance increases
almost ideally with the number of cores. The LEON3 officially
only supports a maximum of 4 cores and the OR1200 is not
multi-core capable at all.

VII. CONCLUSION AND FUTURE PROSPECTS

The ParaNut architecture is a new open and highly scalable
processor architecture for embedded systems. Special focus
is put on parallelism at thread and data level in order to
allow small or powerful systems based on one architecture.
A new concept of parallel processing units with customizable
capabilities will allow a seamless transition between SIMD
vectorization and thread-level parallelism. The core archi-
tecture has been implemented and evaluated on an FPGA.
The benchmark results appear very promising, especially the
speedup of 7.7 with 8 cores indicates an excellent scalability.

The project is still in an early stage, and the present
implementation leaves a lot of room for optimizations and
improvements. Future work will concentrate on completing the
implementation and evaluating the advantages of the presented
linked mode. A support library is planned to provide a POSIX-
Threads-compatible interface, so that the SIMD and threading
capabilities can be utilized using OpenMP. Further steps will
be to develop an MMU and to support Linux as an operating
system.

REFERENCES

[1] D. G. Bailey, Design for Embedded Image Processing on FPGAs, 1st ed.
Wiley Publishing, 2011.

[2] M. Pohl, M. Schaeferling, and G. Kiefer, “An efficient FPGA-based
hardware framework for natural feature extraction and related Computer
Vision tasks,” in 24th International Conference on Field Programmable
Logic and Applications (FPL), Sept. 2014, pp. 1–8.

[3] M. Schaeferling, M. Bihler, M. Pohl, and G. Kiefer, “ASTERICS -
An Open Toolbox for Sophisticated FPGA-Based Image Processing,”
in 13th embedded world Conference, Feb. 2015.

[4] Aeroflex Microelectronic Solutions, “LEON3 Processor,” 2014. [On-
line]. Available: http://www.gaisler.com/index.php/products/processors/
leon3

[5] Adapteva Inc., “Epiphany Multicore Intellectual Prop-
erty,” 2015. [Online]. Available: www.adapteva.com/
epiphany-multicore-intellectual-property/

[6] P. Mishra and N. Dutt, Processor Description Languages. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[7] P. Ienne and R. Leupers, Customizable Embedded Processors: Design
Technologies and Applications, ser. Series in Systems on Silicon.
Massachusetts: Morgan Kaufmann, Jul. 2006.

[8] R. Inta, D. J. Bowman, and S. M. Scott, “The Chimera: An Off-the-
shelf CPU/GPGPU/FPGA Hybrid Computing Platform,” International
Journal of Reconfigurable Computing, vol. 2012, pp. 2:2–2:2, Jan.
2012. [Online]. Available: http://dx.doi.org/10.1155/2012/241439

[9] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor,
and R. Laufer, “PipeRench: a coprocessor for streaming multimedia
acceleration,” in Proceedings of the 26th International Symposium on
Computer Architecture, 1999, pp. 28–39.

[10] M. Lanuzza, S. Perri, P. Corsonello, and M. Margala, “A New Re-
configurable Coarse-Grain Architecture for Multimedia Applications,”
in Second NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), Aug. 2007, pp. 119–126.

[11] J. Choi, S. Brown, and J. Anderson, “From software threads to parallel
hardware in high-level synthesis for FPGAs,” in International Confer-
ence on Field-Programmable Technology (FPT), Dec. 2013, pp. 270–
277.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture - A
Quantitative Approach (5. ed.). Morgan Kaufmann, 2012.

[13] D. L. et al., OpenRISC 1000 Architecture Manual. opencores.org,
April 2014. [Online]. Available: http://opencores.org/or1k/Main\ Page

[14] Oracle Corporation, “OpenSPARC Slide-Cast,” 2008.
[Online]. Available: http://www.oracle.com/technetwork/systems/
opensparc/2008-oct-opensparc-slide-cast-07-tt-1539014.html

[15] Oracle Corporation, “OpenSPARC T1 on Xilinx FPGAs – Updates,”
2008. [Online]. Available: http://www.oracle.com/technetwork/systems/
opensparc/18-ramp-2008-final-1530382.pdf

[16] Embedded Microprocessor Benchmark Consortium (EEMBC),
“CoreMark Benchmark Scores Database,” 2015. [Online]. Available:
http://www.eembc.org/coremark/index.php

embedded world Conference 2015
www.embedded-world.eu


